On the distribution of Elkies primes for abelian varieties Alexandre Benoist (University of Luxembourg) Joint work with Jean Kieffer (CNRS Nancy) Journées arithmétiques, Luxembourg - June 30, 2025 ## Elliptic curves over finite fields Let E/\mathbb{F}_q be an elliptic curve over a finite field. ### Definition (Elkies prime) A prime $\ell \neq \operatorname{char}(\mathbb{F}_q)$ is said to be Elkies for E if and only if there exist an elliptic curve E' and an isogeny $\varphi: E \to E'$ of degree ℓ defined over \mathbb{F}_q . Otherwise it is said to be Atkin. ## Elliptic curves over finite fields Let E/\mathbb{F}_q be an elliptic curve over a finite field. ### Definition (Elkies prime) A prime $\ell \neq \operatorname{char}(\mathbb{F}_q)$ is said to be Elkies for E if and only if there exist an elliptic curve E' and an isogeny $\varphi : E \to E'$ of degree ℓ defined over \mathbb{F}_q . Otherwise it is said to be Atkin. The characteristic polynomial of Frobenius of E is $X^2 - tX + q$ where $t = q + 1 - \#E(\mathbb{F}_q)$. The prime ℓ is Elkies for E if and only if $$\left(\frac{t^2-4q}{\ell}\right)=0 \text{ or } 1.$$ # Elliptic curves over finite fields Let E/\mathbb{F}_q be an elliptic curve over a finite field. ### Definition (Elkies prime) A prime $\ell \neq \operatorname{char}(\mathbb{F}_q)$ is said to be Elkies for E if and only if there exist an elliptic curve E' and an isogeny $\varphi : E \to E'$ of degree ℓ defined over \mathbb{F}_q . Otherwise it is said to be Atkin. The characteristic polynomial of Frobenius of E is $X^2 - tX + q$ where $t = q + 1 - \#E(\mathbb{F}_q)$. The prime ℓ is Elkies for E if and only if $$\left(\frac{t^2-4q}{\ell}\right)=0 \text{ or } 1.$$ <u>Heuristic:</u> The number of Elkies and Atkin primes is approximately the same. ### Results about the distribution of Elkies primes Shparlinski and Sutherland proved that the number of Elkies and Atkin primes is approximately the same **on average** for these two families: - ullet all elliptic curves defined over a fixed finite field \mathbb{F}_q - the reductions modulo p of a given non-CM elliptic curve E/\mathbb{Q} . ## Results about the distribution of Elkies primes Shparlinski and Sutherland proved that the number of Elkies and Atkin primes is approximately the same **on average** for these two families: - ullet all elliptic curves defined over a fixed finite field \mathbb{F}_q - the reductions modulo p of a given non-CM elliptic curve E/\mathbb{Q} . We now consider a non-CM elliptic curve E/\mathbb{Q} . #### Goal For a prime p of good reduction for E, we denote by E_p the reduction of E modulo p. • For L > 0, let $N_e(p, L)$ be the number of Elkies primes for E_p in the interval [L, 2L]. We have $0 \le N_e(p, L) \le \pi(2L) - \pi(L)$ and we expect $$N_e(\rho,L) pprox rac{\pi(2L) - \pi(L)}{2}.$$ • We want to study the distribution of these numbers for primes p in an interval of the form [P, 2P]. # Simple model to predict the distribution of Elkies primes For a prime p of good reduction for E, we denote by t_p the trace of Frobenius of E_p . - Naive assumption: $t_p^2 4p$ has a probability $\frac{1}{2}$ to be a square modulo ℓ , independently of t_p and ℓ . - Let $X_p := \# \left\{ \ell \in [L, 2L] : \left(\frac{t_p^2 4p}{\ell} \right) = 0 \text{ or } 1 \right\}.$ # Simple model to predict the distribution of Elkies primes For a prime p of good reduction for E, we denote by t_p the trace of Frobenius of E_p . - Naive assumption: $t_p^2 4p$ has a probability $\frac{1}{2}$ to be a square modulo ℓ , independently of t_p and ℓ . - Let $X_p := \# \left\{ \ell \in [L, 2L] : \left(\frac{t_p^2 4p}{\ell} \right) = 0 \text{ or } 1 \right\}.$ - In the model, $X_p \sim B(\pi(2L) \pi(L), \frac{1}{2})$. Then $\mathbb{E}(X_p) = \frac{\pi(2L) \pi(L)}{2}$ and $\sigma(X_p) = \frac{\sqrt{\pi(2L) \pi(L)}}{2}$. ## Numerical experiments The distribution of the numbers $N_e(p,L)$ seems to converge to a Gaussian distribution whose mean value is $\mu = \frac{\pi(2L) - \pi(L)}{2}$ and standard deviation $\sigma = \frac{\sqrt{\pi(2L) - \pi(L)}}{2}$ (graph with $P = 10^7$; L = 250; $E : y^2 + y = x^3 - x^2$). # Convergence to a Gaussian distribution For $p \in [P, 2P]$, we set $$X_{P,L}(p) = \frac{N_{e}(p,L) - \mu}{\sigma}.$$ Let $\psi: \mathbb{R}_{>0} \to \mathbb{R}$ be a function such that $\frac{\psi(x)}{x^n} \xrightarrow[x \to +\infty]{} +\infty$ for every $n \in \mathbb{N}$. ### Theorem (B.-Kieffer) Assuming the Generalized Riemann Hypothesis (GRH), the sequence $(X_{\psi(L),L})$ converges weakly to the standard Gaussian distribution with mean value 0 and variance 1 as $L \to +\infty$. # Elkies primes in higher dimension Let A/\mathbb{F}_q be a polarized abelian variety of dimension g with real multiplication (RM) by an order \mathcal{O} in a totally real number field K of degree d. For a prime ideal $\mathfrak{l}\subset\mathcal{O}$ and $\mathfrak{l}|\ell$, we define the \mathfrak{l} -torsion subgroup $A[\mathfrak{l}]\subset A[\ell]$ as $$A[\mathfrak{l}] = \bigcap_{f \in \mathfrak{l}} \ker(f) = \{ x \in A[\ell] : f(x) = 0 \text{ for every } f \in \mathfrak{l} \}.$$ #### Definition (Elkies prime) A prime ideal $\mathfrak l$ of $\mathcal O$ is said to be Elkies for A if there exists an $\mathbb F_q$ -rational subgroup of $A[\mathfrak l]$ that is maximal isotropic for the Weil pairing e_ℓ and stable under $\mathcal O$. #### Goal Let A be a polarized abelian variety defined over a number field F with RM by \mathcal{O} . - For a prime $\mathfrak p$ of good reduction for A, we denote by $A_{\mathfrak p}$ the reduction of A modulo $\mathfrak p$. The reduction $A_{\mathfrak p}$ also has RM by $\mathcal O$. - For L > 0, let $N_e(\mathfrak{p}, L)$ be the number of Elkies primes for $A_{\mathfrak{p}}$ of norm in [L, 2L]. - We want to study the distribution of these numbers for primes $\mathfrak p$ whose norm is in an interval of the form [P,2P]. #### The main result Let c_L be the number of primes $\mathfrak l$ of $\mathcal O$ whose norm is contained in [L,2L] and h=g/d. For $\mathfrak p$ of norm in [P,2P], let $X_{P,L}(\mathfrak p)=\frac{N_e(\mathfrak p,L)-\alpha_h\cdot c_L}{\sqrt{\alpha_h(1-\alpha_h)\cdot c_L}}$, where α_h is a constant. #### Theorem (B.-Kieffer) Assume GRH. If A has "large Galois image", then the sequence $(X_{\psi(L),L})$ converges weakly to the standard Gaussian distribution with mean value 0 and variance 1 as $L \to +\infty$. | h | 1 | 2 | 3 | 4 | 5 | |--------------------------------|---------------|-------|----------------|------------------|-----------| | α_h (exact value) | $\frac{1}{2}$ | 38 | $\frac{5}{16}$ | $\frac{35}{128}$ | 63
256 | | α_h (approximate value) | 0.5 | 0.375 | 0.3125 | 0.2734 | 0.2461 | Table: Values of α_h ## Large Galois images Let $$G_F = \operatorname{Gal}(\overline{F}/F)$$. We write $\widehat{\mathbb{Z}}_{\geq n} = \prod_{\ell \text{ prime, } \ell \geq n} \mathbb{Z}_{\ell}$. The ℓ -adic Galois representations $\rho_{\ell} : G_F \to \operatorname{GSp}_{2h}(\mathcal{O} \otimes \mathbb{Z}_{\ell})$ attached to A can be combined into a global representation $\widehat{\rho}_n = G_F \to \operatorname{GSp}_{2h}(\mathcal{O} \otimes \widehat{\mathbb{Z}}_{\geq n})$. #### Definition (Large Galois image) We say that A has large Galois image if for some $n \geq 1$, the image of $\widehat{\rho}_n$ contains $\operatorname{Sp}_{2n}(\mathcal{O} \otimes \widehat{\mathbb{Z}}_{\geq n})$. • Strategy of the proof: show that the moments $\mathbb{E}(X_{P,L}^k)$ converge to the moments of the Gaussian distribution with mean value 0 and variance 1. - Strategy of the proof: show that the moments $\mathbb{E}(X_{P,L}^k)$ converge to the moments of the Gaussian distribution with mean value 0 and variance 1. - For a prime ideal \mathfrak{l} of \mathcal{O} , we could characterize the fact that \mathfrak{l} is Elkies for $A_{\mathfrak{p}}$ in terms of the action of Frobenius on $A_{\mathfrak{p}}[\mathfrak{l}]$ and a Frobenius element at \mathfrak{p} of G_F . - Strategy of the proof: show that the moments $\mathbb{E}(X_{P,L}^k)$ converge to the moments of the Gaussian distribution with mean value 0 and variance 1. - For a prime ideal \mathfrak{l} of \mathcal{O} , we could characterize the fact that \mathfrak{l} is Elkies for $A_{\mathfrak{p}}$ in terms of the action of Frobenius on $A_{\mathfrak{p}}[\mathfrak{l}]$ and a Frobenius element at \mathfrak{p} of G_F . - The density of primes $\mathfrak p$ such that a given prime $\mathfrak l$ is Elkies for $A_{\mathfrak p}$ is given by the Chebotarev density theorem. We can compute it if A has large Galois image. - Strategy of the proof: show that the moments $\mathbb{E}(X_{P,L}^k)$ converge to the moments of the Gaussian distribution with mean value 0 and variance 1. - For a prime ideal \mathfrak{l} of \mathcal{O} , we could characterize the fact that \mathfrak{l} is Elkies for $A_{\mathfrak{p}}$ in terms of the action of Frobenius on $A_{\mathfrak{p}}[\mathfrak{l}]$ and a Frobenius element at \mathfrak{p} of G_F . - The density of primes $\mathfrak p$ such that a given prime $\mathfrak l$ is Elkies for $A_{\mathfrak p}$ is given by the Chebotarev density theorem. We can compute it if A has large Galois image. - Strategy of the proof: show that the moments $\mathbb{E}(X_{P,L}^k)$ converge to the moments of the Gaussian distribution with mean value 0 and variance 1. - For a prime ideal \mathfrak{l} of \mathcal{O} , we could characterize the fact that \mathfrak{l} is Elkies for $A_{\mathfrak{p}}$ in terms of the action of Frobenius on $A_{\mathfrak{p}}[\mathfrak{l}]$ and a Frobenius element at \mathfrak{p} of G_F . - The density of primes $\mathfrak p$ such that a given prime $\mathfrak l$ is Elkies for $A_{\mathfrak p}$ is given by the Chebotarev density theorem. We can compute it if A has large Galois image. Thank you!