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Introduction

Definition
Let n € Z~¢. The n-th cyclotomic polynomial ®,, is

e.(X)= ] (X — exp <ZZ:”>) .

1<k<n
ged(k,n)=1
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Coefficients

o b (X)=X—1
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Coefficients

0o Dy(X)=X—1
0o Dy(X)=X+1
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Coefficients

0 P (X)=X—1
o Oy(X)=X+1
0o P3(X)=X24+X+1
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Coefficients

o d(X)=X-1

0 Dy(X)=X+1

0o P3(X)=X24+X+1

0 By(X)=X%2+1

0o P5(X) =X+ X34+ X?+X +1

Alexandre Benoist (Joint work with Prof. Antonella Perucca) The ternary cyclotomic polynomials ®3,,, November 19, 2025



Coefficients
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Coefficients

P(X)=X -1

Dy(X)=X+1
P3(X)= X2+ X +1
Py(X)=X2+1

P5(X) =X+ X3+ X?+ X +1
Pe(X)=X2 - X +1

The first cyclotomic polynomial to have a coefficient —2 is :

<I>105(X) — X484 XAT L x46 _ x43 _ x42 o9yl _ x40 _ x39 4 x36 4 x35
4+ X3 X33 xB2 4 x3l_ x28 _ x26 _ x4 x22_ x20 4 xI7
+ X164 x15 +X14+X13+X12 _ X9 _ x8_9xT7 _ x6_ xb
+ X244 X 41
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Summary

© Binary cyclotomic polynomials
@ Structure of ternary cyclotomic polynomials

© The family ®3,,,,
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Binary cyclotomic polynomials

The binary case : explicit and general computation

#(p1p2)
Let p; and ps be two odd primes such that p; < p2, and ®,,,,(X) = > apX*.
k=0

Theorem (Lam and Leung, 1996)
Let u and v be the two unique non-negative integers such that p(p1p2) = up1 + vps. We have
1 ifk =1ip1 + jpe with0 <i<wuand0<j<w,

ar =14 —1 ifk=1ip1+jp2s —pipewithu+1<i<ps—landv+1<j<p—1,
0 otherwise.

The integer u is determined by up; = ¢(p1p2) mod py. We take v = W.
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Binary cyclotomic polynomials

lllustration : the LLL diagram (Lenstra, Lam and Leung)

We take p; =5 and po =7. We have p(5-7) =24 =5-24+7-2,sou=v =2.

D2

28 33 3 8 13 18 23

21 26 31 1 6 11 16

14 19 24 29 34 4 9 D1
v+1 712 17 22 27 32 2

0 5 10 15 20 25 30

u—+1
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Binary cyclotomic polynomials

lllustration : the LLL diagram (Lenstra, Lam and Leung)

We take p; =5 and po =7. We have p(5-7) =24 =5-24+7-2,sou=v =2.

D2

28 33 3 8 13 18 23

21 26 31 1 6 11 16

14 19 24 29 34 4 9 D1
v+1 712 17 22 27 32 2

0 5 10 15 20 25 30

u—+1

So,

@5‘7(){) — X24—X23+X19—X18+X17—X16+X14—X13+X12—X11+X10
~ X34+ XX+ X - X +1.
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Consequences

o For every k, a;, € {0,1,—1}.
@ Formulas for the number of non-zero coefficients : for ¢ € Z, let N.(®,,,,) be the number of
coefficients equal to c in &, ,,. We have

Ni(@pip,) = (u+1)(v+1) and N_1(®y,p,) = (p1 —v—=1)(p2 —u—1).

@ Structure : the exponents of positive (or negative) coefficients are given by arithmetic progressions.

Figure — Coefficients of ®5.1;.
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Binary cyclotomic polynomials

The particular case p; = 3

@ The case po = 1 mod 3 : v = 0. One arithmetic
progression for the exponents of positive terms, two B
for negative terms. The coefficients are cyclic e s e
1,—1,0 up to the middle, and 1,0, —1 after.

Figure — Coefficients of ®3.13

@ The case p; =2 mod 3 : v = 1. One arithmetic
progression for negative terms, two for positive
terms. The coefficients are cyclic 1,—1,0 up to the
middle, and —1,1,0 after.

00 25 50 75 100 135 150 175 200

Figure — Coefficients of ®3.11
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Structure of ternary cyclotomic polynomials

The exponents of positive/negative terms are not described by arithmetic progressions. There are gaps
(consecutive coefficients equal to 0).

1 1

04 0

-1 -1
0 20 40 60 80 100 120 0 50 100 150 200 250

Figure — Coefficients of ®3.5.31 and ®3.5.61 (up to the middle)
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Structure of ternary cyclotomic polynomials

Block structure

Let p; < p2 < ps3 be three odd primes such that ps > pips. Let ¢ and r be the quotient and the
remainder of the euclidean division of p3 by p1po.

Definition (Blocks)
By grouping terms of degree contained between two multiples of p3, we write

p(p1p2)—1

q
Cpipars = D SX)XT and fi(X) =D fis (X)X,
=0 =0

The polynomials f; are called p3-blocks, the polynomials f; ; are called pips-blocks for 0 < j < ¢ and
fiq is an r-bloc.

Example

The polynomial ®3.5.37 contains eight 37-blocks, each containing two 15-blocks and one 7-block.
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Visualization of the blocks

f P1p2.p30 f Pip2psrl

A
Y
A

>  p3 —blocks

l fP:P:'Py(m | fripapsna | Sppspanz I Srpapsio | fripupano | Fopeparz | p‘lpz - bIOCkS

Figure — Blocks (from Jules Nies' Bachelor thesis). Example with g = 2.
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Structure of ternary cyclotomic polynomials

Visualization of the blocks
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Figure — Coefficients of ®3.5.31
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Structure of ternary cyclotomic polynomials

Application : maximum gap problem

Definition (Maximum gap)

The maximum gap of ®,,p,p, is the maximal number of consecutive coefficients equal to 0. J

The following theorem was established by studying the gaps in each block f; and between the blocks f;
and fiq1:

Theorem (Ambrosino et al., 2021)
The maximum gap of ®p, p,p, is equal to (p1 — 1)(p2 — 1) — 1.

Conjecture (Zhang, 2019)

. . . pa
The number of maximum gaps in ®,, p,p, is 2 plsz'
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Structure of ternary cyclotomic polynomials

Operations on blocks

Definition (Operations on the blocks)

For a pi1pa-block f; ;, the rotation operation R, f; ; consists in shifting circularly all the coefficients with

a step equal to r. The truncation operation 7, f; ; consists in keeping only the terms of degree smaller
than 7.

Example

Forpips =15 and f(X) =1+ X + X? — X5 — X6 — X7 we have

RQf(X) — X2—2 _ X5—2 _X6—2 _ X7—2 +X14_0 +X14_1
Tof(X) = 1+ X.
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Structure of ternary cyclotomic polynomials

Interactions between the blocks

Write U, (X) = X221 — 1 X — . — XPr1 4 XP2 4 XPetpi—l,

@PIPZ

Proposition (Relations between blocks)

o(p1p2) )
Write ®p,,p, (X) = > b,X". If p3 > p1p2, we have :

=0
(') fOO - 101112

(i) f = ... = fig-1,
(”') fl,q szO:

)

('V fz+1 0= 'rfz 0— z+1\I/p1p2~
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The family ®3

3p2p3

The family ®3,,,,,

Let p2 < p3 be two odd primes such that ps > 3ps and ps = £1,+2 mod 3ps. We write

Ps,, (X) = Zfz(%m) b;X*. The goal is to compute all the blocks f; o of ®5,,,, (0 <i < p(3p2) —1). To
do so, we use the formula

fio=—Ys3p, and fiz1 =Rrfio—bit1¥sp,.
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The family ®3

3p2p3

The family ®s,,,,,

Let p2 < p3 be two odd primes such that ps > 3ps and ps = £1,+2 mod 3ps. We write

Ps,, (X) = Zfz(%m) b;X*. The goal is to compute all the blocks f; o of ®5,,,, (0 <i < p(3p2) —1). To
do so, we use the formula

fio=—Ys3p, and fiy1="TR.fio— bir1V3p,.
This is doable by hand because :

@ since r = +1, 42 mod 3py, we only do small rotations.

o the coefficients @3, are periodic (before/after the middle coefficient).

Moreover, W3, (X) = —1 — X — X2 + XP2 4+ XP2H+1 4 XP2+2 \We partition the exponents in four
"slices” :

51:{07]—72}) SQ:{g»"'ap2_1}v S3:{p23p2+1)p2+2}7 S4:{p2+37"')3p2_1}'
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The family ®3

3p2p3

Example of computation for » =1 and p, = 1 mod 3.

L 1&al S [ S | Ss [ S |
0 [1 1 1 1]0. ... 0[-1 -1 1[0 . 0
1 |10 (0. 0-1] 0 0 1 0. 01
2 [0 0 -1 0.0-10] 0 1 0. 010
3 |10 1 1 [00-100] 0 -1 -1[0... 0100
4 [-1][0 0 1[00-1000] 0 0 1 [0.... 1000

p2—3| 1] 0 0 —1][-10..0] 0 0 1 [0....10.0
p»-2] 00 -1 -1](0...0]0 1 0......10.0
pp—1] 10 0 1]0...0]0 -1 -1][0. ..10.0
p2 |00 1 ©0]0...0]-1 -1 0]0..10.20
pat1|-1]0 -1 -1]0...0-1]0 1 1 ]0...10.0
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The family ®3

3p2p3

The other cases

o Case po =2 mod 3 : the order of the operations from the middle is different (subtract ¥3,,,, add
U3,,, do nothing).

o Case r = —1 : rotations go the other way and there is a "perturbation” for S5 at the step po — 2,
while there is no perturbation for S.

o Case r = 42 : rotations by two indices, so more non-zero coefficients exit S7 and S3 to go in S
and Sy. So, there are more perturbations for S; and S3, while S5 and S; have more complex
expressions. We can also reason by periodicity.
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The family ®3

3p2p3

Properties for the family ®3,,,,,.

Theorem

Let ps < p3 be two odd primes such that ps > 3ps and ps = £1,4+2 mod 3ps. Then, the number of

maximum gaps of @3y, is 2[ £ |.
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The family ®3

3p2p3

Properties for the family ®3,,,,,.

Theorem

Let ps < p3 be two odd primes such that ps > 3ps and ps = £1,4+2 mod 3ps. Then, the number of

maximum gaps of @3y, is 2[ £ |.

Theorem

Let pa < p3 be two odd primes such that ps > 3ps and p3 = £2 mod 3p2. Then, ®3,, has at least one

coefficient equal to 2 or —2.
Thank you !
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