The distribution of Elkies primes

Alexandre Benoist (University of Luxembourg)

Joint work with Jean Kieffer (CNRS Nancy)

C2 days, Pornichet - April 1, 2025

Let \mathbb{F}_q be a finite field of characteristic $\operatorname{char}(\mathbb{F}_q) \neq 2, 3$. Let E be an elliptic curve over \mathbb{F}_q given by a Weierstrass equation

$$y^2 = x^3 + ax + b.$$

Let \mathbb{F}_q be a finite field of characteristic $\operatorname{char}(\mathbb{F}_q) \neq 2, 3$. Let E be an elliptic curve over \mathbb{F}_q given by a Weierstrass equation

$$y^2 = x^3 + ax + b.$$

The endomorphism of Frobenius of E is:

$$\phi_q: \left\{ \begin{array}{l} E \to E \\ (x,y) \mapsto (x^q,y^q). \end{array} \right.$$

Let \mathbb{F}_q be a finite field of characteristic $\operatorname{char}(\mathbb{F}_q) \neq 2, 3$. Let E be an elliptic curve over \mathbb{F}_q given by a Weierstrass equation

$$y^2 = x^3 + ax + b.$$

The endomorphism of Frobenius of E is:

$$\phi_q: \left\{ \begin{array}{l} E \to E \\ (x,y) \mapsto (x^q,y^q). \end{array} \right.$$

There is an integer t_E , called trace of Frobenius of E, such that

$$\phi_q^2 - t_E \phi_q + q = 0.$$

Let \mathbb{F}_q be a finite field of characteristic $\operatorname{char}(\mathbb{F}_q) \neq 2, 3$. Let E be an elliptic curve over \mathbb{F}_q given by a Weierstrass equation

$$y^2 = x^3 + ax + b.$$

The endomorphism of Frobenius of E is:

$$\phi_q: \left\{ \begin{array}{l} E \to E \\ (x,y) \mapsto (x^q,y^q). \end{array} \right.$$

There is an integer t_E , called trace of Frobenius of E, such that

$$\phi_q^2 - t_E \phi_q + q = 0.$$

We have $\#E(\mathbb{F}_q) = q+1-t_E$. Hasse bound : $|t_E| \leq 2\sqrt{q}$.

Schoof's algorithm

Motivation: point-counting problem.

Let E be an elliptic curve over \mathbb{F}_q .

• Schoof's algorithm (1985): compute t_E modulo small primes $\ell < \ell_{max}$ such that

$$\prod_{\ell \le \ell_{max}} \ell > 4\sqrt{q}$$

and use the Chinese Remainder Theorem.

Schoof's algorithm

Motivation: point-counting problem.

Let E be an elliptic curve over \mathbb{F}_q .

• Schoof's algorithm (1985): compute t_E modulo small primes $\ell \leq \ell_{max}$ such that

$$\prod_{\ell \le \ell_{max}} \ell > 4\sqrt{q}$$

and use the Chinese Remainder Theorem.

• For a prime ℓ , the ℓ -torsion subgroup of E is

$$E[\ell] = \{ P \in E(\overline{\mathbb{F}_q}) : [\ell]P = O_E \}.$$

• The trace of ϕ_q seen as an endomorphism of $E[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ is $t_E \mod \ell$.

Schoof's algorithm

Motivation: point-counting problem.

Let E be an elliptic curve over \mathbb{F}_q .

• Schoof's algorithm (1985): compute t_E modulo small primes $\ell \leq \ell_{max}$ such that

$$\prod_{\ell \le \ell_{max}} \ell > 4\sqrt{q}$$

and use the Chinese Remainder Theorem.

• For a prime ℓ , the ℓ -torsion subgroup of E is

$$E[\ell] = \{ P \in E(\overline{\mathbb{F}_q}) : [\ell]P = O_E \}.$$

- The trace of ϕ_q seen as an endomorphism of $E[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ is $t_E \mod \ell$.
- Time complexity: $\widetilde{O}(\log(q)^5)$.

The SEA algorithm and Elkies primes

The SEA algorithm (90s) : $t_E \mod \ell$ can be computed faster if there is a subgroup $K \subset E[\ell]$ of order ℓ defined over \mathbb{F}_q . Such a subgroup exists if and only if $t_E^2 - 4q$ is a square modulo ℓ .

The SEA algorithm and Elkies primes

The SEA algorithm (90s) : $t_E \mod \ell$ can be computed faster if there is a subgroup $K \subset E[\ell]$ of order ℓ defined over \mathbb{F}_q . Such a subgroup exists if and only if $t_E^2 - 4q$ is a square modulo ℓ .

Definition

A prime $\ell \neq \operatorname{char}(\mathbb{F}_q)$ is said to be Elkies for E if and only if

$$\left(\frac{t_E^2 - 4q}{\ell}\right) = 0 \text{ or } 1.$$

Otherwise, it is said to be Atkin.

<u>Heuristic:</u> The number of Elkies and Atkin primes is approximately the same. If true, the complexity of the SEA algorithm is $\widetilde{O}(\log(q)^4)$.

Setting

Let E be a non-CM elliptic curve defined over \mathbb{Q} .

- For P > 0, we write $\mathcal{P}_{\mathbb{Q}}(P, 2P)$ for the set of primes of good reduction for E in [P, 2P]
- For $p \in \mathcal{P}_{\mathbb{Q}}(P, 2P)$, let E_p be the reduction of E modulo p, and t_p its trace of Frobenius
- For L > 0, let $N_e(p, L)$ be the number of Elkies primes for E_p in [L, 2L]
- \bullet π is the prime-counting function

Setting

Let E be a non-CM elliptic curve defined over \mathbb{Q} .

- For P > 0, we write $\mathcal{P}_{\mathbb{Q}}(P, 2P)$ for the set of primes of good reduction for E in [P, 2P]
- For $p \in \mathcal{P}_{\mathbb{Q}}(P, 2P)$, let E_p be the reduction of E modulo p, and t_p its trace of Frobenius
- For L > 0, let $N_e(p, L)$ be the number of Elkies primes for E_p in [L, 2L]
- ullet π is the prime-counting function
- Shparlinski and Sutherland (2015): in average, $N_e(p,L)$ is close to $\frac{\pi(2L)-\pi(L)}{2}$.

Simple model to predict the distribution of Elkies primes

- $t_p^2 4p$ has a probability $\frac{1}{2}$ to be a square modulo ℓ , independently of t_p and ℓ .
- For $p \in \mathcal{P}_{\mathbb{Q}}(P,2P)$, let $X_p := \# \left\{ \ell \in [L,2L] \ : \ \left(\frac{t_p^2 4p}{\ell} \right) = 0 \text{ or } 1 \right\}$.

Simple model to predict the distribution of Elkies primes

- $t_p^2 4p$ has a probability $\frac{1}{2}$ to be a square modulo ℓ , independently of t_p and ℓ .
- For $p \in \mathcal{P}_{\mathbb{Q}}(P, 2P)$, let $X_p := \# \left\{ \ell \in [L, 2L] : \left(\frac{t_p^2 4p}{\ell} \right) = 0 \text{ or } 1 \right\}$.
- In the model, $X_p \sim B(\pi(2L) \pi(L), \frac{1}{2})$. Then $\mathbb{E}(X_p) = \frac{\pi(2L) \pi(L)}{2}$ and $\sigma(X_p) = \frac{\sqrt{\pi(2L) \pi(L)}}{2}$.

Numerical experiments

The distribution of Elkies primes seems to converge to a Gaussian distribution whose mean value is $\frac{\pi(2L)-\pi(L)}{2}$ and standard deviation $\frac{\sqrt{\pi(2L)-\pi(L)}}{2}$ (graph with $P=10^7$; L=250; $E:y^2+y=x^3-x^2$).

Convergence to a Gaussian distribution

We equip $\mathcal{P}_{\mathbb{Q}}(P,2P)$ with a uniform probability measure \mathbb{P}_{P} .

$$\mu = \frac{\pi(2L) - \pi(L)}{2}, \ \sigma = \frac{\sqrt{\pi(2L) - \pi(L)}}{2}, \ Y_{P,L}(p) = \frac{N_e(p,L) - \mu}{\sigma}.$$

Let $\psi : \mathbb{R}_{>0} \to \mathbb{R}$ be a function such that $\frac{\psi(x)}{x^n} \xrightarrow[x \to +\infty]{} +\infty$ for every $n \in \mathbb{N}$.

Theorem (B.-Kieffer)

Assuming the Generalized Riemann Hypothesis (GRH), the sequence $(Y_{\psi(L),L})$ converges weakly to a standard Gaussian distribution with mean value 0 and variance 1.

Elkies primes in higher dimension

Let A/\mathbb{F}_q be a polarized abelian variety of dimension g with real multiplication by an order $\mathcal O$ in a totally real number field K of degree d. For a prime ideal $\mathfrak l\subset\mathcal O$ and $\mathfrak l|\ell$, we define the $\mathfrak l$ -torsion subgroup $A[\mathfrak l]\subset A[\ell]$ as

$$A[\mathfrak{l}] = \bigcap_{f \in \mathfrak{l}} \ker(f) = \{ x \in A[\ell] : f(x) = 0 \text{ for every } f \in \mathfrak{l} \}.$$

Definition (Elkies prime)

A prime ideal $\mathfrak l$ of $\mathcal O$ is said to be Elkies if there exists an $\mathbb F_q$ -rational subgroup of $A[\mathfrak l]$ that is maximal isotropic for the Weil pairing e_ℓ and stable under $\mathcal O$.

Setting

Assume GRH.

- ullet \mathcal{O} : an order in a totally real number field K of degree d
- ullet A: polarized a.v. of dimension $g\geq 1$ over a number field F with RM by ${\mathcal O}$
- $\mathcal{P}_K(L,2L)$: set of prime ideals \mathfrak{l} of K such that $N_{K/\mathbb{Q}}(\mathfrak{l}) \in [L,2L]$
- $\mathcal{P}_F(P,2P)$: set of prime ideals $\mathfrak p$ of F of good reduction for A such that $N_{F/\mathbb Q}(\mathfrak p)\in [P,2P]$
- $N_e(\mathfrak{p}, L)$: number of Elkies primes $\mathfrak{l} \in \mathcal{P}_K(L, 2L)$ for $A_{\mathfrak{p}}$
- Σ_h : set of unordered partitions of the integer h = g/d
- $\alpha_h = \sum_{(d_1, \dots, d_r) \in \Sigma_h} \frac{1}{2^r} \cdot \prod_{i=1}^r \frac{1}{d_i} \cdot \prod_{k=1}^h \frac{1}{\#\{j : d_j = k\}!}$

The main result

Theorem (B.-Kieffer)

Under GRH and certain assumptions on the Galois representation of A, as $L, P \to \infty$ with $P \gg L^n$ for every positive integer n, the function

$$\begin{array}{cccc} X_{P,L}: & \mathcal{P}_F(P,2P) & \longrightarrow & \mathbb{R} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

converges in distribution to the standard Gaussian distribution with mean value 0 and variance 1.

h	1	2	3	4	5
α_h (exact value)	$\frac{1}{2}$	38	$\frac{5}{16}$	$\frac{35}{128}$	63 256
α_h (approximate value)	0.5	0.375	0.3125	0.2734	0.2461

Table: Values of α_h

Questions?

Thank you!