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Introduction: The Discrete Logarithm Problem (DLP)

Let G be a cyclic group of order n generated by an element g .

For every k ∈ Z/nZ, it is easy to compute gk (time complexity
O(log(n)).

But going in the other direction is much harder ...

Definition (Discrete Logarithm Problem)

Given g and gk , the Discrete Logarithm Problem consists in finding
k ∈ Z/nZ.
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Attacks on the DLP

Examples:

If G = Z/nZ, then solving the DLP is easy ...

If G = (Z/19Z)∗ and g = 3, what is k such that 3k = 10 ?

(Answer: 11)

Notation: n = #G and p is the larger prime factor of n

The time complexity of the best generic attacks on the DLP is
O(
√
p · poly(log(n))).

There are specific attacks for G = (Z/pZ)∗, but not for elliptic curves
...
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Summary

1 Elliptic curves
Definition and the group law
One application to cryptography

2 Point counting methods for elliptic curves over finite fields
Schoof’s algorithm
The SEA algorithm
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Elliptic curves: definition

Let k be a field of characteristic p.

Definition

An elliptic curve E over k is given by the solutions (x , y) ∈ k2 of an
equation of the form

y2 = x3 + ax + b

with an additional point O called the ”point at infinity”, where (a, b) ∈ k2

satisfy 4a3 + 27b2 ̸= 0. We denote by E (k) the set of points of E .
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Singularity

The condition 4a3 + 27b2 ̸= 0 ensures that the curve is smooth.

y2 = x3 (cusp); y2 = x3 − 3x + 2 (node)
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The group law

Thus, elliptic curves are both algebraic and geometric objects.
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Duplication of a point
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Morphisms of elliptic curves: isogenies

Let E ,E ′ be two elliptic curves over k. An isogeny ϕ : E → E ′ is a map
which respects the algebraic and geometric structures of E and E ′.
Concretely, it is a morphism of algebraic varieties such that

ϕ(P + Q) = ϕ(P) + ϕ(Q)

for every points P,Q ∈ E .

Example: the multiplication-by-m map [m]P = P + . . .+ P︸ ︷︷ ︸
m terms

.

Definition/Proposition (torsion)

Let m > 0 be an integer. The m-torsion subgroup of E is

E [m] := {P ∈ E (k) : [m]P = O}.

If m is coprime to char(k), then E [m] ∼= Z/mZ× Z/mZ.
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The Diffie-Hellman protocol (1976)

Let k = Fq be a finite field, and assume that E (Fq) is cyclic of order n,
generated by a point P.

Alice Bob

chooses a random a ∈ Z/nZ [a]P−−→ chooses a random b ∈ Z/nZ

computes [a]P
[b]P←−− computes [b]P

[ab]P = [a]([b]P) [ab]P = [b]([a]P)

Given P, [a]P, [b]P, computing [ab]P is not easy. The security of the
Diffie-Hellman protocol relies on the difficulty to solve the DLP when
#E (Fq) is a large prime number.
⇝ We have to find elliptic curves such that #E (Fq) is a large prime.
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The endomorphism of Frobenius

Let E be an elliptic curve over Fq given by a Weierstrass equation

y2 = x3 + ax + b.

The endomorphism of Frobenius of E is:

ϕq :

{
E → E
(x , y) 7→ (xq, yq).

There is an integer tE , called trace of Frobenius of E , such that

ϕ2q − tEϕq + [q] = 0.

We have #E (Fq) = q + 1− tE . Hasse bound : |tE | ≤ 2
√
q.
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Schoof’s algorithm (1985)

Time complexity: Õ(log(q)5) (quite impossible to use in prcatice for
cryptographic sizes...)

The main idea of Schoof’s algorithm: compute tE modulo small
primes ℓ ≤ ℓmax such that ∏

ℓ≤ℓmax

ℓ > 4
√
q

and use the Chinese Remainder Theorem.

The trace of ϕq seen as an endomorphism of E [ℓ] ∼= (Z/ℓZ)2 is
tE mod ℓ.
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How to compute tE mod ℓ ?

Evaluating the characteristic equation of Frobenius at
P = (x , y) ∈ E [ℓ], we get (xq

2
, yq

2
)− [tE ](x

q, yq) + [q](x , y) = 0.

Since P ∈ E [ℓ], we have [tE ](x
q, yq) = [nℓ](x

q, yq) where
tE ≡ nℓ mod ℓ and 0 ≤ nℓ < ℓ (we also define qℓ the same way).

We test whether the equality (xq
2
, yq

2
)− [k](xq, yq) + [qℓ](x , y) = 0

is satisfied for k = 0, . . . , ℓ− 1. The only k such that the last equality
holds is nℓ.
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Fast exponentiation

We know that E [ℓ] ∼= (Z/ℓZ)2. So, the x-coordinates of the ℓ-torsion

points of E are the roots of a polynomial ψℓ of degree
ℓ2−1
2 . Computations

are performed in the ring

Rℓ =
Fq[x , y ]

(ψℓ(x), y2 − x3 − ax − b)
.

Alexandre Benoist Elliptic curves and point counting PhD Seminar 14 / 19



The SEA algorithm (90s)

The SEA algorithm (90s): tE mod ℓ can be computed faster if there is a
subgroup K ⊂ E [ℓ] of order ℓ defined over Fq, described by a polynomial fℓ
which is a factor of ψℓ. It exists if and only if t2E − 4q is a square modulo ℓ.

Definition

A prime ℓ ̸= char(Fq) is said to be Elkies for E if and only if(
t2E − 4q

ℓ

)
= 0 or 1.

Otherwise, it is said to be Atkin.

Heuristic: The number of Elkies and Atkin primes is approximately the
same. If true, the complexity of the SEA algorithm is Õ(log(q)4).
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Average results for the distribution of Elkies primes

Shparlinski and Sutherland have shown that the number of Elkies and
Atkin primes is roughly the same, in average, over these two families:

All elliptic curves defined over a finite field Fq, when q → +∞

Reductions modulo p of a given elliptic curve E defined over Q
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The distribution of Elkies primes is Gaussian

For an elliptic curve E/Q, let Ne(p, L) be the number of Elkies primes in
(L, 2L) for the elliptic curve E mod p.
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A word about Abelian varieties

The SEA algorithm has been generalized for Abelian varieties
(analogues of elliptic curves in higher dimension)

Elkies primes have also been generalized

Results about the distribution of Elkies primes are (partially)
generalized
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Questions ?

Thank you !
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